Nonlinear Control of a T'wo-link Planar Manipulator

Addy Park
Last edit: October 15, 2024

1 Introduction

The dynamics of robotic manipulators contain trigonometric nonlinearities and quadratic nonlinearities, making
them challenging to control. In this project, I aim to design an optimal controller for a two-link manipulator in two
dimensions. The optimal controller is to track a desired final state constraint as optimally as possible. I plan to take
multiple approaches. In the first approach, I will use feedback linearization to linearize the system and design a linear
quadratic regulator (LQR) for the linearized system. In a second appraoch, I plan to use the control policy given
by LQR (from the first approach) as an initial guess for optimization using Pontryagin’s maximum principle. The
rationale for the second approach is that, while the LQR control policy is optimal with respect to the transformed
control input defined by feedback linearization, it is not necessarily optimal with respect to the physical control input
u. In the third approach, I will use control parameterization, which involves approximating the control input u by
a linear combination of basis function, effectively reducing the decision vector down to just a few variables.

2 Dynamics of a Two-link Planar Manipulator

First, we need to model the dynamics of the two-link manipulator in two dimensions. This can be done from first
principle using from Newton’s laws. The problem setup is as follows:

y
Y2

Yi

Figure 1: Diagram of two-link manipulator in 2D

Let us define three terms:
M(9) = (m1 +ma) LY maLyLa(01 — 02)
m2L1Lgcos(91 — 92) m2L§
.2
0(0’0) _ mQLlLQQQ. gzn(el — 92)
—m2L1L291 sm(91 — 02)
| (m1 +mg)gLicos(6y)
G(O) = [magLacos(f2)
where 6 = [6; 02]T and 0 = [01 QQ]T. M() is called the mass matrix, C(8,) is called the Coriolis term, and
G(0) is the gravity term.

Using these three terms, the dynamics of the manipulator can be written compactly as the following;:

where u = [7'1 TQ]T

3 Feedback Linearization

—M(8) [C(a, 0) + G(6) — u}

. 71 and 79 are the applied torques on each of the two joints.

Feedback linearization can be used to linearize the system. Let us define a new variable v = 6. This change of
variables allows us to obtain the following linear state space system:

61 o 1 0 0][6:] [o 0
91_000001 10’01
X_92_000192+00|:1)2:| @)
0y 000 0] 6] [0 1
1 0 0 0] [6h
o1 0 of |6
Y= 1o 0 1 of |6, 3)
00 0 1] |6

. . T
With the system linearized, we can design a control policy for v to control x = [91 01 6o 02] using techniques
from linear control theory. Once we have found v, we can invert the mapping to get the physical control input u

(which is the one we care about).

4 Linear Quadratic Regulator

To control the linearized system defined by Equations 1 and 2 using the transformed control input v, we can design
a LQR controller with a reference input. But first, consider the system without a reference input (i.e. a regulator).
Assuming that the full state x can be observed (which is a reasonable assumption for a manipulator with encoders)
with no additive sensor noise, the block diagram for LQR control looks like the following:

v %X = Ax+ Bv

\4

Y

y=0Cx

Figure 2: Block diagram of LQR on linearized system without reference input

where matrices A,B, and C are the system matrices of the linear system defined by Equations 2 and 3. K is a gain
matrix which can be computed using the MATLAB command 1qr(). The penalty weights used for the state and
control effort are Q=diag([10 1 10 1]) and R=diag([2 2]). Note that R is the penalty weighting on the control
input v, not u. Therefore, the LQR solution is optimal with respect to v but not necessarily optimal with respect
to the physical control input u. Because this controller is a regulator, it seeks to steer the system to the origin.
To steer the system towards some reference state r instead of the origin, we require a slightly different formulation.
Intuitively, we might expect a valid control policy to be v = K(x — r) (this effectively “shifts” the tracking point
from the the origin to r). But it turns out we also need to add a nominal input v that makes the reference state r
an equilibrium point. That is, the correct control policy is v = v + K(x —r) Also, because the system has two poles
at the origin, the steady-state error is guaranteed to converge to zero. The block diagram with the reference input
included is given in Figure 3 on the next page.

Figure 3: Block diagram of LQR on linearized system with reference input
To simulate the step response (i.e. response to unit reference), I defined a new linear system with system matrices

A=A-BK, B=BK, and C = C with r as the input and y as the output and used the step() command. Here
is the resulting step response with a reference input of r = [r,0,7/2,0]:

Step Response
T

T
i _—
o2 P 4
s
L -
o=
2F - T 3
g
5
o1 B
p
o
E 0
]
a 2
E _ , -
o -
1 _
o 1r // i
5
= -
0 —
1F — T -
g
=1
O 051 B
5
L /
ol
0 1 2 3 4 5 6 7

Time (seconds)

Figure 4: LQR step response of linearized system with reference input

As expected, the steady-state error is zero. The control law that we solved for is a control law for v, not a control
law for the the physical control input u. To get the corresponding control law for u, invert the mapping we used to
linearize the system in Section 3. Recall that the mapping used to linearize the nonlinear system was the following:

v=M"10)|C(6,0)+GO)| +u

To invert the mapping, solve for u:

u=-C(6,0) - G(6) + M(0)v (4)

where v = —K(x —r). Now we have u as a function of x only, which is the control law for u that we were seeking.
To gain intuition behind what feedback linearization is doing, we can substitute the expression for u in Equation 4
into Equation 1. u as we have designed it essentially cancels out any nonlinearities in the system and uses v to
control the resulting linear system.

However, feedback lineraization comes with some caveats. First, to perfectly cancel out nonlinearities, the con-
troller needs perfect knowledge of the state x. Second, it requires that the system be fully-actuated — that is, we
require dim(u) = dim(x) such that the control u can affect all states. It is also required that u is unconstrained or at
least able to take on all values that C(6,)+ G(8) + M (0)v takes. The first caveat can especially become a problem
when there is significant noise in your sensor measurements. In such cases, you should incorporate multiplicative
uncertainties into your model for robustness.

Here is a video of the controller successfully tracking a reference input r = [m,0,7/2,0]. A plot of §; and 6, plotted
over time is shown in Figure 5 is shown below. As expected, the plots in Figures 4 and 5 match.

0 over time
35

thetal
T theta2

Angle (rad)

osF |/

0 1 1 1 1 1 1 1 1 1 |
0 1 2 3 4 5 6 7 8 9 10
Time (sec)

Figure 5: Plot of 6; and 65 over time

The control effort has also been plotted in the figure below:

Control effort

Control effort (N-m)

Time (sec)

Figure 6: Plot of control effort over time

https://youtu.be/KalPLfjl1b

5 Optimization Using Pontryagin’s Maximum Principle

While the system is able to track the reference using feedback linearizaton and LQR, the control policy in Figure 6 is
not optimal with respect to u. To optimize the control policy with respect to u, we can use Pontryagin’s maximum
principle.

5.1 Necessary Conditions for Optimality and Boundary Conditions

Pontryagin’s maximum principle provides a set of necessary optimality conditions that must be satisfied by an optimal
solution of optimization problems involving dynamic constraints (i.e. constraints that are functions of time). In
addition to handling dynamic constraints, this framework can also accommodate state and input constraints, making
it applicable to a broad class of control problems. This approach to solving optimal control problems is sometimes
referred to as the “indirect” method because it solves the optimization problem without directly discretizing the
control and state trajectories and then formulating an optimization problem over these discretized variables. The
solution method involves solving for set of first-order differential equations for the state variables and costate variables.
The costate variables are a collection of Lagrange multipliers (which are continuous functions of time). But before
solving these equations, a cost functional to optimize the control policy with respect to must be defined:

ty ty
J:/ L(x,u)dt:/ u” Rudt (5)
0 0

1
where R = 0 (1)] In other words, we will solve a minimal control effort problem. Note that ¢; is a free variable
that we can optimize over. To steer the system to a desired final state as we did in LQR, we also define a final state

constraint that the optimal control policy u* must satisfy:

s

x(tr) = |)y (6)

0

The dynamic constraint associated with satisfying the system dynamics is given by Equation 1. We will assume that
there are no constraints on the control input u. Next, we construct the Hamiltonian:

n
H=L+X"f=L+> M/

i=1
where L is defined in the cost function in Equation 4, f is given by the dynamics x = f(x) in Equation 2, and
A is a vector containing the Lagrange multipliers A; corresponding to the dynamic constraints f; on each state
variable. With the cost and constraints defined, we seek to find an optimal control policy u* that minimizes the
cost function J while satisfying the dynamic constraint given by Equation 1 and final state constraint given in
Equation 6. Pontryagin’s principle states that the optimal state trajectory x* and optimal control policy u* must
satisfy the following necessary conditions:

(I) %*(t) = 2L (x* (1), u*(£), A" (t), 1)
(1) A"(t) = — 28 (x* (1), u* (1), A" (1),)

(II1) 0= 2E(x* (), u*(t), \"(t),1)

where V(x(tf),ty) is the terminal cost function. Conditions (I) and (II) give us 2n differential equations (where n
is the dimension of x) and (III) gives us m algebraic equations (where m is the dimension of u). This implies that
we will have 2n constants of integration to solve for. The constants of integration can be found from the following
boundary conditions:

(i) x*(to) = %o
(i) x*(t5) = x;

(iii) [g—‘;(x*(t),u*(t),A*(t),t)]Téxf + [H (% (), u* (£), X*(£),t) + D0 (x*(tg), t5)] 6ty =0

(i) and (ii) are the initial conditions and final conditions, respectively. (iii) is called the transversality condition,
which determines the optimal terminal conditions (i.e. optimal ¢; and/or x(tf), depending on which are allowed to
vary). For this problem, since the final state is fixed (but final time is free), the first term vanishes and only the
second term remains. The boundary conditions give us 2n + 1 equations to solve for the 2n constants of integration
and the final time ¢;. Note that, by introducing final constraints, we introduce additional Lagrange multipliers by
adding an extra term to the augmented cost function. This has implications on being able to find the Lagrange
multipliers at the final time ¢; as we will see in the next section.

5.2 Numerical Solution Using Gradient Descent

A straightforward way to solve equations (I)—(IIT) numerically is by following the iterative procedure outlined below:

Guess initial u(t) and call it ul(t).

Get x(ty)
x(0) Integrate x = f(x, ul)

Get A(tf)

\ _ dH
Integrate A = %~ backwards

Determine better u(t),
call it u?(t)

Integrate x = f(x,u?)

Iterate until converged...

Figure 7: Numerical algorithm for solving state and costate equations.

The problem with this approach is that it assumes that the final costate A(ff) is not a free parameter and can
be determined from knowing x(ts). In the case of having final state constraints, we introduce additional Lagrange
multipliers associated with the final state constraints. These additional Lagrange multipliers will be constants, not
functions of time, since they correspond to constraints at a single point in time rather than a dynamic constraint that
must hold for all time. In this case, the original Lagrange multipliers associated with the dynamic constraints must
be free at the final time t; if they weren’t, then the problem would be overconstrained at the final time. Therefore,
the procedure in Figure 7 does not work for the cases with final state constraints.
In an attempt to solve for A(t) another way, I used the optimality condition %—I‘f = 0 which is just an algebraic
equation and not a differential equation. This is possible in general when dim(u) = dim(A). But for this problem,
dim(u) < dim(X). Yet, we are still able to find all four Lagrange multipliers A1 (¢), A2(¢), A3(t), and \4(¢) because
%—E = 0 gives us two equations for Ao and Ay (A\; and A3 do not appear). One can solved for Ay and A4 using
MATLAB’s symbolic toolbox (see symbolic.mlx in the Appendix A). Moreover, the costate equations for A;(t) and
As(t) depend on Ay(t) and A(t) only, which allows us to find A;(¢) and As(t) by integrating. The resulting plots for
all four Lagrange multipliers are plotted below:
However, this doesn’t give us any useful information about how we could improve our initial guess for u*(¢) since we
found A using the optimality condition %—f = 0; this means that we assumed our initial guess was already optimal
and the X we found is the corresponding optimal A*. As a result, %—f is just zero for all ¢:

Ideally, we would know our state trajectory x(¢) and costate trajectory A(t) corresponding to our initial guess for

u(t). Then we can calculate what the corresponding %—{l] is and use that information to perform a classic gradient

descent algorithm u**! = u® + a%—{f to nudge your control input u to the optimal value with an appropriate
step size a. o

An approach like this (which corresponds to the procedure in Figure 7) would be possible if there were no final
constraints on the system. In such a case, we would be able to integrate the state equation forward in time from the

Costate variables
400 -

200 \

2001 \

Costate variables

-600 -

-800 I I I I I I 1 I I |

Time (sec)

Figure 8: Plot of A over time.

dHdu

dHdul
dHdu2

0.8 -

0.6

0.2

04 F

06

-0.8 -

Figure 9: Plot of %—Ij over time.

initial state to find x(t¢), then find A(t¢) from the transversality condition, and then integrate the costate equation
backwards in time to find A(t). This would give trajectories for x(¢) and A(¢) corresponding to a guess for u*(¢).
Then we would be able to calculate %—Ij for the current guess and use gradient descent to improve our guess iteratively
until convergence.

A possible workaround this problem would be to enforce a terminal cost instead of a terminal constraint. Whereas
a terminal constraint is a hard constraint that must be satisfied, a terminal cost merely penalizes deviations from a
desired terminal state. Since this approach does not introduce additional Lagrange multipliers to the problem, the
gradient descent method described in this section should work. Moreover, by using this approach, we remove the
need for a feasible initial guess to satisfy the desired final state. Instead, any initial guess becomes is a feasible initial
guess (it’ll just have a high final cost).

6 Optimization by Parameterizing Control Input u(t)

Another approach to solving the optimal control problem is by parameterizing the control input using a set of basis
functions. This effectively turns the infinite-dimensional control problem (where we must find control input for every
single point in continuous time) to a finite-dimensional one where we can use functions like fmincon in MATLAB
to search for the optimal set of coefficients for the basis functions. For example, one option is to use polynomials to
parameterize u(t):

art" + Bt lrw + "4 (7)
gt™ + Pt F "2 - oy

u(t) =

which is parameterized by a set of parameters [a1, 81,71, ..., C1, @2, B2, 72, ..., c2] . These are the decision variables
of the optimization problem. As in any iterative method, having a good initial guess can expedite convergence. To
obtain a good initial guess for these parameters, we can take our initial guess for u(¢) and use polynomial interpolation
to obtain a set of coefficients that approximately matches our initial guess for u(t) (Figure 6). Using too high of a
degree of a polynomial leads to Runge’s phenomenon so a polynomial of degree 3 was chosen. Here are plots of the
interpolated polynomials:

Polynomial Fit for u,
20 T T T T T T

= //
T o/ 1
4 © Sampled Points
u,(t)
10 Fitted Polynomial for u, (t) | |
-20 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
Time t
Polynomial Fit for u,
5 T T T T T T
0+ //_ S

u,(t)
I

> Sampled Points

10 / u(t)
B / Fitted Polynomial for uz(t)

1 2 3 4 5 6 7 8 9 10

Figure 10: Polynomial fit to initial guess for u(t).
The coeflicients of the polynomial fit are the following:

a1 = —0.0718, B1 = 0.8435, v =0, ¢; = —2.7852
Qg = 00194, [32 = *02289, Y2 = 0, Co = 3.5124

While the interpolated polynomial is not a great approximation of our initial guess for u(t), it has the correct order
of magnitude and may serve as a good starting point. But upon running fmincon, it was clear that the results of
this interpolation leads to a vastly different state trajectory as shown in Figure 11 on the next page.

140 T T

thetal

thetaldot
L theta2 i
120 theta2dot |,

100 |- /]

80 [|

-20 I I I I I I I 1 I

Time (sec)

Figure 11: Polynomial fit to initial guess for u(t).

This poses a problem. If we try to get our initial guess for the parameters to approximate our initial guess u(t)
as closely as possible by increasing the number of points we interpolate through, the polynomial suffers severely from
Runge phenomenon. On the other hand, if we sample too few points from our initial guess u(t), the trajectory is
nowhere close to being a feasible solution and the solver has a difficult time converging to an optimal solution. It
seems that other basis functions may be more effective.

7 Summary of Code

This section describes how the code for this project is structured. I wrote three different main scripts, one for each
approach:

e main fdbklin.m: This is the main script for control using feedback lineaization + LQR.

e main pontryagin.m: This is the main script for optimal control using Pontryagin’s principle (using result of
feedback lineraization + LQR as an initial guess for iterative procedure).

e main fmincon.m: This is the main script for optimal control using parameterization and fmincon.

There is an additional script, polynomial fit.m which fits a polynomial to the control input u(¢) from feedback
linearization + LQR. The coefficients of this fit gets used in main fmincon.m as an initial guess for the optimal
polynomial coefficients.

The function TwoLinkArmDynamics.m is shared by all of the three main scripts above:

e TwoLinkArmDynamics.m: This function encodes the dynamics of the two link manipulator. It is meant to be
passed into ode45 to solve for the state trajectory x(t).

The following functions are used by main fdbkln.m:

e FLController.m: This function computes the control input for a given time ¢ according to the control policy
in Equation 4.

e CalcGain.m: This function computes the optimal gain K for the linearized system in Equations 2 and 3.
The following functions are used by main fmincon.m:

e control_input.m: This function computes the control input corresponding to the polynomial control policy in
Equation 7 given the polynomial coefficients.

e cost_function.m: This function computes the cost J = Zszl (deesimd —x(t)|I* + ||u(tk)||2> given the

polynomial coefficients of your control policy. It uses the coefficients you pass in to generate the control policy
as a function of time and uses ode45 to get the corresponding state trajectory x(¢) in order to calculate J.

e final state_error.m: This function encodes the final state constraint that you pass into fmincon.

There is also a livescript (easier to visualize outputs that are symbols in livescripts), symbolic.mlx, that uses symbolic
toolbox to solve for the costate variables A, and convert them to MATLAB functions for use in the main_pontryagin.m
script.

8 Takeaways

Although I wasn’t able to solve for a truly optimal control policy using Pontryagin’s principle or by parameterizing
the control input u(¢), this project gave me a deeper understanding of optimal control theory. In addition to lecture
material covered by Prof. MacMartin in MAE 6780, a useful reference for this project was Optimal Control Theory:
An Introduction by Kirk, which I used to study Pontryagin’s principle in greater detail. This project also gave me a
lot of experience with structuring code for complex optimization problems. As I continue to study optimal control,
I plan to revisit this problem and improve my approach as I deepen my understanding.

10

A Appendix
A.1 MATLAB Code: main_fdbkln.m

% Two link mobot arm control simulation

/4 Author: Addy (Jin Hyun) Park

4 Main script for control wusing feedback linearization.
clc

clear

close all

global u_global

% System parameters

ml = 10;

m2 = 10;

L1 = 1;

L2 = 1;

param = [ml; m2; L1; L2]; /7 parameter wector

u_global = []; 7 global array to store solution for u and time for wu
/4 Penalty weights and LR gain

Q = diag([10 1 10 11);

R = diag([2 2]);

K = CalcGain(Q,R);

/% Reference input and control law
r = [pi 0 pi/2 0]; / reference input

u = @(x) FLController(x,K,r,param); /7 function for control policy (fdbk. lin.)
4 Solve for dynamics wusing ode4b
T = 10; 7 terminal time (just needs to be big enough to rTeach target pose)

x0 = [0;0;0;0]; 7/ 2nitial conditions

tspanl = [0 T];

funl = @(t,x) TwolinkArmDynamics(t,x,u(x),param); /7 robot arm dynamics
[t,x] = ode45(funl,tspanl,x0); /7 solve using odelb5

/4 Plots for theta, theta_dot
thetal = x(:,1);

theta2 = x(:,3);

thetaldot = x(:,2);
theta2dot x(:,4);

figure (1)

hold on

plot (t,thetal)

plot (t,theta2)
yline(r(1),'--")
yline(r(3),'--")

legend ("thetal","theta2")
title ("\theta over time")
xlabel ("Time (sec)")
ylabel ("Angle (rad)")

figure (2)

hold on

plot (u_global(:,1) ,u_global(:,2))
plot(u_global(:,1) ,u_global(:,3))

11

title ("Control effort")
xlabel ("Time (sec)")

ylabel ("Control input (N*m)")
legend ("\tau_1","\tau_2")

4 Animate solution

tanimation = linspace(0,T,500);

thetal = interpl(t,thetal,tanimation); / interpolate solution onto evenly-spaced
time wector for smooth animation

theta2 = interpl(t,theta2,tanimation);

videoFile = 'animation.mp4';

v = VideoWriter (videoFile, 'MPEG-4'); / Specify the file name and format
v.FrameRate = 80; / Set the frame rate

open(v); / Open the file for writing

figure (3)
hold on ; grid on
set(gca, 'XLim',[-2.5 2.5])
set(gca, 'YLim',[-2.5 2.5])
title("Two-link Planar Manipulator")
xlabel ("x (m)")
ylabel ("y (m)")
axis equal;
for i = 1:length(tanimation)
Jcla
hl1 = plot ([0 Li*cos(thetal(i))],[0 Lixsin(thetal(i))], 'Color',[0 0.4470
0.7410], 'LineWidth', 5);
h2 =plot ([Li*cos(thetal(i)) Li*cos(thetal(i))+L2*cos(theta2(i))],[Li*sin(
thetal(i)) Lix*sin(thetal(i))+L2*sin(theta2(i))], 'Color',[0.4660 0.6740
0.1880], 'LineWidth', 5);
pause (0.01) ;

if i == length(tanimation) /7 Break the loop 4if we've reached the end of the
time span
break

end

drawnow; J Render the frame
frame = getframe(gcf); / Capture the frame
writeVideo(v, frame); J Write the frame to the wideo
delete (hl)
delete (h2)

end

close (v);

A.2 MATLAB Code: TwolLinkArmDynamics.m

function xdot = TwolinkArmDynamics(t,x,u,param)

ZState equations (i.e. egns of motion) for two link Tobot arm

A t: time

4 Tz: state wvector [thetal, thetal_dot, theta2, theta2_dot]

VA tvec: time of applied torque

VA u: applied torque vector (the entire time history) [ul(t), u2(t)]
V4 param: wvector containing system parameters [m1, m2, L1, L2]

% Constants

= -9.81;
y Extract system parameters

> 0”

12

ml = param(1);

m2 = param(2);

L1 = param(3);

L2 = param(4);

/4 Extract state wariables

thetal = x(1);

thetal_dot = x(2);

theta2 = x(3);

theta2_dot = x(4);

% Matrices

M = [(m1+m2)*L1"2 m2*L1*xL2*(cos(thetal-theta2));
m2*L1*xL2*xcos (thetal-theta2) m2*L2"°2];

C = [m2*xL1*L2*theta2_dot "2*xsin(thetal-theta2);
-m2*%L1*L2*xthetal_dot "2*sin(thetal-theta2)];
G = [(ml+m2)*g*xLl*cos(thetal);

m2*g*xL2*cos (theta2)];
/4 Equations of motion
theta_ddot = -inv(M)*(+C+G)+u;
xdot = [thetal_dot;theta_ddot (1) ;theta2_dot;theta_ddot(2)];
end

A.3 MATLAB Code: FLController.m

function K = CalcGain(Q,R)

ZCalculates optimal LR gain given penalty weights § and R
4 OL system dynamics

A =T[010
0
0
0
(o
1 0;

0 O;

0 11]1;

C = eye(4);

D zeros (4,2);

>

0
0;
1

o O O

1;

(o]
I
o

’

O O O O O

sysl = ss(A,B,C,D);

% LQR
[K,S,P] = 1lqr(sys1l,Q,R);
end

A.4 MATLAB Code: CalcGain.m

function K = CalcGain(Q,R)

4 Calculates optimal LEOR gain given penalty weights § and R

% OL system dynamics

A=1[010
0
0
0

B = [0
1

>

0
0;
1

o O O

0];

O O O O O o

13

0 11];
C = eye(4);
D zeros (4,2);

sysl = ss(A,B,C,D);

Z LQR
[K,S,P] = 1lqr(sys1,Q,R);
end

A.5 MATLAB Code: main_pontryagin.m

% Two link mobot arm control simulation

4 Author: Addy (Jin Hyun) Park

4 Main script for control wusing Pontryagin principle.
clc

clear

close all

global u_global

/4 System parameters

ml = 10;

m2 = 10;

L1 = 1;

L2 = 1;

param = [ml;m2;L1;L2]; 7 pack <nto wector

u_global = [J; 7 global array to store solution for u and time for u

A% Initial guess for u(t) using feedback linearization
/4 Penalty weights and LR gain

Q diag ([10 1 10 11);

R = diag([2 2]);

K CalcGain(Q,R);

/% Reference and control law

r = [pi 0 pi/2 0]; /7 reference input

u = @(x) FLController(x,K,r,param); / function for controller (fdbk. lin.)
% Solve for dynmnamics wusing ode4b

T = 10; 7 terminal time just needs to be big enough to Teach target pose

x0 = [0;0;0;0]; 7/ initial conditions

tspanl = [0 TI;

options = odeset('RelTol', 1e-10, 'AbsTol', 1e-10);

funl = @(t,x) TwolinkArmDynamics(t,x,u(x),param); /7 differential equation to
solve

[t,x] = ode45(funl,tspanl ,x0,options); 7/ solve wusing ode4b

/s Some plots

theta_1 = x(:,1);

theta_2 = x(:,3);

theta_dot_1 = x(:,2);

theta_dot_2 = x(:,4);

t_u = u_global(:,1); / time wector that corresponds to tau
taul = u_global(:,2);

tau2 = u_global(:,3);

14

figure (1)

hold on

plot (t,theta_1)

plot (t,theta_2)
yline(r(1),'--")
yline(r(3),'--")

legend ("thetal","theta2")
title ("\theta over time")
xlabel ("Time (sec)")
ylabel ("Angle (rad)")

figure (2)

hold on

plot(t_u,taul)

plot (t_u,tau2)

title ("Control effort")

xlabel ("Time (sec)")

ylabel ("Control effort (Nxm)")
legend ("\tau_1","\tau_2")

% Also compute thetaddot for later
theta_ddot_1 = diff(theta_dot_1)./diff (t);
theta_ddot_2 diff (theta_dot_2)./diff (t);

4% Compute costate wvariables

% Interpolate all state and costate wvariables to the same time vector

[t_u,index,”] = unique(t_u); 7 no duplicates are allowed for interpl

taul = taul (index) ;

tau2 = tau2(index);

taul = interpl(t_u,taul,t);

tau? interpl (t_u,tau2,t);

% Find lambda_2 and lambda_4 by solwvoing dH/du=0

lambda2 = L1.*(L1.*ml.*taul+L1l.*m2.*taul+L2.*m2.*tau2.*cos(theta_1-theta_2))
.*x=-2.0;

lambda4 = L2.*m2.*(L2.*xtau2+L1.*xtaul.*xcos(theta_l1-theta_2)) .*x-2.0;

% Plot lambda_2 and lambda_4

figure (3)

hold on

plot(t,lambda?2)

plot (t,lambda4)

title("Costate variables")

xlabel ("Time (sec)")

ylabel ("Costate variables")

A%k Solve for lambda_1 and lambda_3 JL%

4 First compute lambda_dot_2 and lambda_dot_4
lambda_dot_2 = diff(lambda2)./diff (t);
lambda_dot_4 = diff (lambda4d)./diff (t);

s Adjust size to match size of lambda_dot_2 and lambda_dot_/4
theta_1 = theta_1(2:end);

theta_2 theta_2(2:end);

theta_dot_1 = theta_dot_1(2:end);

theta_dot_2 theta_dot_2(2:end);

lambda2 = lambda2(2:end);

lambda4 = lambda4 (2:end) ;

4 Compute lambda_1 and lambda_3

15

lambdal = -lambda_dot_2-(L1.*L2.*xlambda4.*m2.*xtheta_dot_1.*sin(theta_1-theta_2)
Lk (ml1+m2) .*x2.0) ./(L2.72.%m2.72-L2.72.*m2."2.*xcos(theta_1-theta_2)."2+L2."2.x%
ml.*m2)+(L1.*L2.*x1lambda2.*m2.*theta_dot_1.*cos(theta_1-theta_2).*sin(theta_1-
theta_2) .%2.0) ./(L1.*L2.*ml1+L1.%L2.*m2-L1.*xL2.*m2.*xcos(theta_1-theta_2).72);

lambda3 = -lambda_dot_4+(L1.*L2.*xlambda2.*ml.*theta_dot_2.*sin(theta_1-theta_2)
.x2.0) ./(L1.72.%m1+L1.72.%m2-L1.72.*m2.*cos(theta_1-theta_2).72)-(L1.*xL2.x*
lambda4 .*ml.*theta_dot_2.*cos(theta_1-theta_2).*sin(theta_1-theta_2).%2.0)./(
L1.*L2.*m1+L1.%L2.*m2-L1.*xL2.*m2.*xcos(theta_1-theta_2)."72);

4 lambda_1 and lambda_3 are a little jittery so smoothen <t out first

lambdal = smoothdata(lambdal, "sgolay");
lambda3 = smoothdata(lambda3, "sgolay");
/4 Plot lambda_1 and lambda_3

figure (3)

hold on

plot(t(2:end), lambdal)
plot(t(2:end), lambda3)
legend ("\lambda_2","\lambda_4","\lambda_1","\lambda_3")

A% Find nmew guess for u(t) using gradient descent u' = u + alpha*dH/du
A%} Compute Hamilitonian L4J

4 Adjust size of taul and taul

taul = taul(2:end);

dtaul = gradient(taul);

dtaul smoothdata(dtaul, "sgolay");

tau?2 tau2(2:end) ;
dtau2 = gradient (tau2);
dtau?2 smoothdata(dtau2, "sgolay");

Hamiltonian = taul. "2+tau2. 2+lambdal.*theta_dot_1+lambda2.*xtheta_ddot_1+lambda3
.*theta_dot_2+lambda4.*theta_ddot_2;

dH = gradient (Hamiltonian) ;

dH smoothdata (dH, "sgolay");

dHdul = taul.*2.0+lambda2./(L1."2.*m1+L1."72.*m2-L1.72.*m2.*cos(theta_1-theta_2)
.72)-(lambda4 .*cos(theta_1-theta_2))./(L1.*L2.*m1+L1.*L2.*m2-L1.*L2.*m2.*cos(
theta_1-theta_2).72);

dHdu2 = tau2.*2.0-(lambda2.*cos(theta_1-theta_2))./(L1.*L2.*m1+L1.*xL2.*m2-L1.%*L2
.*m2.*xcos (theta_1-theta_2).72)+(lambda4 .*(m1+m2))./(L2.72.%m2.72-L2.72.%m2
."2.%cos(theta_1-theta_2).72+L2.72.%ml.*m2) ;

%4 Plot dH/du

figure (4)

title ("dHdu")

hold on

plot (t(2:end) ,dHdul)
plot (t(2:end) ,dHdu2)
legend ("dHdul","dHdu2")
ylim ([-1,1]1)

A.6 MATLAB Code: symbolic.mlx

clc
clear
close all

16

/4 Create symbols
syms g ml m2 L1 L2 theta_1 theta_2 theta_dot_1 theta_dot_2 theta_ddot_1...
theta_ddot_2 taul tau2 lambdal lambda2 lambda3 lambda4 lambdab real

M = [(m1+m2)*L1°2 m2*xL1*xL2*(cos(theta_1-theta_2));
m2*L1*L2*xcos (theta_1-theta_2) m2*L2°2]; / mass matriz
c_vec = [m1*xL1*L2*xtheta_dot_2 2*sin(theta_1-theta_2);
-m2*L1*xL2*theta_dot_1"2*sin(theta_1-theta_2)]; / coriolis term
g_vec = [0;0]; 7 gravity term

u_vec = [taul;tau2l]; / control input
thetaddot = inv(M)*(u_vec-c_vec-g_vec);
thetalddot = thetaddot (1);

theta2ddot = thetaddot (2);

Hamiltonian = taul "2+tau2”"2+lambdal*theta_dot_1 + lambda2*thetalddot + lambda3x*
theta_dot_2 + lambdad4*theta2ddot

lambdaldot = -diff (Hamiltonian,theta_1)
lambda2dot = -diff (Hamiltonian,theta_dot_1)
lambda3dot = -diff (Hamiltonian,theta_2)
lambda4dot = -diff (Hamiltonian,theta_dot_2)

dHdul = diff (Hamiltonian,taul)
dHdu2 = diff (Hamiltonian,tau2)

% Solve for lambda2 and lambdai

solutionl = solve([dHdul==0 dHdu2==0],[lambda2 lambda4d]) ;
solutionl.lambda?2

solutionl.lambda4d

4 Solve forl lambdal and lambda3

syms lambda_dot_2 lambda_dot_4

solution2 = solve([lambda2dot-lambda_dot_2==0 lambda4dot-lambda_dot_4==0], [
lambdal lambda3]);

solution2.lambdal

solution?2.lambda3

/4 Convert symbolic functions to MATLAB functions for use inm other
4 scripts/functions

funl = matlabFunction(lambdaldot) ;

fun2 = matlabFunction(lambda2dot) ;

fun3 = matlabFunction(lambda3dot) ;

fun4 = matlabFunction(lambdaddot) ;

fun5 = matlabFunction(solutionil.lambda?2);

fun6 = matlabFunction(solutionl.lambda4);

fun7 = matlabFunction(solution2.lambdal);

fun8 = matlabFunction(solution2.lambda3);

A. 7 MATLAB Code: main_fmincon.m

4 Two link robot arm control simulation
4 Author: Addy (Jin Hyun) Park

/4 Main script for control wusing fmincon.
clc

clear

17

close all

global u_global
u_global = []; 7/ global array to store solution for u and t

poly_degree = 1;

4 Initial guess for the control parameters (e.g., random or zeros)

n_params = poly_degree + 1; J Number of parameters for each control input
Zinitial_params = [-0.0718, 0.8435, 0, -2.7852, 0.0194, -0.2289, 0, 3.5124];
initial_params = [-0.2449, 3.7090, -2.7852, 0.0651, -1.0018, 3.5124];

% Time span and tnitial conditions

t_span = [0, 10]; 7 Define time span for optimization

x0 = [0; 0; 0; 0O]; /7 initial state

/4 Define constraints (e.g., final state must be [0, 0])
final_state_constraint = @(params) final_state_error (params, t_span, x0);

4 Set up optimization options
options = optimoptions('fmincon', 'Display', 'iter', 'Algorithm', 'sqp');

/% Solve optimization problem
optimal _params = fmincon(@(params) cost_function(params, t_span, x0),
initial_params, [1, [1, [1, [1, (1, [1,
final_state_constraint, options);

A.8 MATLAB Code: polynomial fit.m

4 Script for finding polynomtial tinterpolation that approxzimates initial
% guess for u(t) found using feedback linearization & LQR.

% Author: Addy (Jin Hyun) Park

clc

clear

close all

% Load intitial guess
load ("u_global.mat")
u_initial = u_global;

% Define the number of sample points and the degree of the polynomial
num_samples 3;
poly_degree = 3;

! !

% Generate time wector 't' associated with the data points in 'u
N = size(u_initial, 1); / Number of total data points

t_original = u_initial(:, 1);

/% Select 10 evenly spaced sample points

sample_indices = round(linspace(l, N, num_samples));

samples = u_initial (sample_indices, :);

t_samples = samples(:,1); / Sampled time points

u_samples = samples(:,2:3); / Corresponding sampled u(t) points

/4 Perform polynomial fitting for each dimension of wu

% Initialize matrices to store polynomial coefficients for both dimensions
poly_coeffs = zeros(2, poly_degree+1);

18

% Perform polynomial fitting for each dimension of u
for dim = 1:2
% Fit a 9th-degree polynomial for the sampled data in the current dimension
poly_coeffs(dim, :) = polyfit(t_samples, u_samples(:, dim), poly_degree);
end

/4 Display the polynomial coefficients for each dimension
disp('Polynomial coefficients for dimension 1:');
disp(poly_coeffs(l, :));

disp('Polynomial coefficients for dimension 2:');
disp(poly_coeffs (2, :));

% Optional: Plot ortginal data and fitted polynomial for visualtization
t_fine = linspace(0, 10, 100); /% Time points for plotting the fitted polynomial

/% Evaluate the fitted polynomials for both dimensions at the fine time points
u_fit_1 = polyval(poly_coeffs(1l, :), t_fine);
u_fit_2 = polyval(poly_coeffs(2, :), t_fine);

4 Plot for ul

figure;

subplot (2, 1, 1);

plot(t_samples, u_samples(:, 1), 'ro', 'DisplayName', 'Sampled Points'); 7
Sampled ul points

hold on;
plot(t_original, u_initial(:, 2), 'b-', 'DisplayName', 'u_1(t)'); 7/ Original ul
data

plot(t_fine, u_fit_1, 'g--', 'DisplayName', 'Fitted Polynomial for u_1(t)'); 7
Fitted polynomial for wul

title('Polynomial Fit for u_1');

legend;

xlabel('Time t');

ylabel ('u_1(t)"');

ylim([-20,201)

hold off;

4 Plot for ul

subplot (2, 1, 2);

plot(t_samples, u_samples(:, 2), 'ro', 'DisplayName', 'Sampled Points'); /
Sampled u2 points

hold on;
plot(t_original, u_initial(:, 3), 'b-', 'DisplayName', 'u_2(t)'); % Original u2
data

plot(t_fine, u_fit_2, 'g--', 'DisplayName', 'Fitted Polynomial for u_2(t)'); 7
Fitted polynomial for uZ2

title('Polynomial Fit for u_2');

legend;

xlabel('Time t');

ylabel ('u_2(t)"');

hold off;

A.9 MATLAB Code: cost_function.m

function J = cost_function(params, t_span, x0)

19

Function that calculates cost given coefficients for the polynomial
control input ('params'). It uses ode45 to get the state trajectory
corresponding to this polynomial control <nput and calculates the cost
for this control & state trajectory.
/% Define time points for evaluation
t_eval = linspace(t_span(1), t_span(2), 100); 7 Adjust based on time
resolution

SRR W X

% System parameters

ml = 10;
m2 = 10;
L1 = 1;
L2 = 1;
sysparams = [ml; m2; L1; L2]; 7 pack into wector

desired_final_state = [pi 0 pi/2 0]°';

/% Solve system dynamics over the time span using the given control input
parameterization

[t_sol, x_sol] = ode45(@(t, x) TwolLinkArmDynamics(t, x, control_input(t,
params), sysparams), t_eval, x0);

4 Cost function: for example, minimize final state deviation and control

effort

J 0; 7/ Initialize
for i = 1:length(t_sol)
u_i = control_input(t_sol(i), params);
4 Add terms to the cost function, for example:
J = J + norm(x_sol(i, :) - [desired_final_state]) "2 + norm(u_i) " ~2; /
{uadratic penalty
if i == 1
figure
plot(t_sol, x_sol)
end
end
J = J / length(t_sol); /7 Normalize

end

A.10 MATLAB Code: control_input.m

function u_t = control_input(t, params)
/% Function for generating control 4nput as a function of time for
% polynomial control input w(t) = alpha*t+beta*t "2+gamma*t "3+...
% 'params ' 4is a wvector containing the polynomtial coefficients.
% params ts a vector containing the parameters for both u_1(t) and u_2(t)
4 First half of params 4s for u_1, second half is for u_2
n_params = length(params) / 2;
ul_params = params (l:n_params);
u2_params = params (n_params+1:end);

% Polynomial representation of control tnputs w_1(t) and u_2(t)

ul_t = polyval(ul_params, t); / Polynomtal for u_1(t)
u2_t = polyval(u2_params, t); / Polynomial for u_2(t)

20

end

/% Return the 2D control input as a vector
u_t = [ul_t; u2_tl;

A.11 MATLAB Code: final _state_error.m

function [c, ceq] = final_state_error(params, t_span, xO0)
% This function contains the final state constraint which will be passed to
4 fmincon.

end

% Simulate the system
/4 System parameters

ml = 10;
m2 = 10;
L1 = 1;
L2 = 1;

sysparams = [ml; m2; L1; L2]; % pack into wector

[¥, x_sol] = ode45(@(t, x) TwolinkArmDynamics(t, x, control_input(t,
, sSysparams), linspace(t_span(l), t_span(2), 100), x0);

4 Final state
x_final = x_sol(end, :);

% Constraints: Ensure final state matches desired final state
desired_final_state = [pi 0 pi/2 0]; / Ezample desired final state
ceq = x_final - desired_final_state; /7 Equaltity constraint

4 No inequality constraints in this case

c = [1;

params)

21

	Introduction
	Dynamics of a Two-link Planar Manipulator
	Feedback Linearization
	Linear Quadratic Regulator
	Optimization Using Pontryagin's Maximum Principle
	Necessary Conditions for Optimality and Boundary Conditions
	Numerical Solution Using Gradient Descent

	Optimization by Parameterizing Control Input u(t)
	Summary of Code
	Takeaways
	Appendix
	MATLAB Code: main_fdbkln.m
	MATLAB Code: TwoLinkArmDynamics.m
	MATLAB Code: FLController.m
	MATLAB Code: CalcGain.m
	MATLAB Code: main_pontryagin.m
	MATLAB Code: symbolic.mlx
	MATLAB Code: main_fmincon.m
	MATLAB Code: polynomial_fit.m
	MATLAB Code: cost_function.m
	MATLAB Code: control_input.m
	MATLAB Code: final_state_error.m

