
Nonlinear Control of a Two-link Planar Manipulator

Addy Park

Last edit: October 15, 2024

1 Introduction

The dynamics of robotic manipulators contain trigonometric nonlinearities and quadratic nonlinearities, making
them challenging to control. In this project, I aim to design an optimal controller for a two-link manipulator in two
dimensions. The optimal controller is to track a desired final state constraint as optimally as possible. I plan to take
multiple approaches. In the first approach, I will use feedback linearization to linearize the system and design a linear
quadratic regulator (LQR) for the linearized system. In a second appraoch, I plan to use the control policy given
by LQR (from the first approach) as an initial guess for optimization using Pontryagin’s maximum principle. The
rationale for the second approach is that, while the LQR control policy is optimal with respect to the transformed
control input defined by feedback linearization, it is not necessarily optimal with respect to the physical control input
u. In the third approach, I will use control parameterization, which involves approximating the control input u by
a linear combination of basis function, effectively reducing the decision vector down to just a few variables.

2 Dynamics of a Two-link Planar Manipulator

First, we need to model the dynamics of the two-link manipulator in two dimensions. This can be done from first
principle using from Newton’s laws. The problem setup is as follows:

Figure 1: Diagram of two-link manipulator in 2D

Let us define three terms:

M(θ) =

[
(m1 +m2)L

2
1 m2L1L2(θ1 − θ2)

m2L1L2cos(θ1 − θ2) m2L
2
2

]

C(θ, θ̇) =

[
m2L1L2θ̇2

2
sin(θ1 − θ2)

−m2L1L2θ̇1
2
sin(θ1 − θ2)

]

G(θ) =

[
(m1 +m2)gL1cos(θ1)

m2gL2cos(θ2)

]
where θ =

[
θ1 θ2

]T
and θ̇ =

[
θ̇1 θ̇2

]T
. M(θ) is called the mass matrix, C(θ, θ̇) is called the Coriolis term, and

G(θ) is the gravity term.

1

Using these three terms, the dynamics of the manipulator can be written compactly as the following:

θ̈ =

[
θ̈1
θ̈2

]
= −M−1(θ)

[
C(θ, θ̇) +G(θ)− u

]
(1)

where u =
[
τ1 τ2

]T
. τ1 and τ2 are the applied torques on each of the two joints.

3 Feedback Linearization

Feedback linearization can be used to linearize the system. Let us define a new variable v = θ̈. This change of
variables allows us to obtain the following linear state space system:

ẋ =


θ̇1
θ̈1
θ̇2
θ̈2

 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



θ1
θ̇1
θ2
θ̇2

+


0 0
1 0
0 0
0 1

[
v1
v2

]
(2)

y =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



θ1
θ̇1
θ2
θ̇2

 (3)

With the system linearized, we can design a control policy for v to control x =
[
θ1 θ̇1 θ2 θ̇2

]T
using techniques

from linear control theory. Once we have found v, we can invert the mapping to get the physical control input u
(which is the one we care about).

4 Linear Quadratic Regulator

To control the linearized system defined by Equations 1 and 2 using the transformed control input v, we can design
a LQR controller with a reference input. But first, consider the system without a reference input (i.e. a regulator).
Assuming that the full state x can be observed (which is a reasonable assumption for a manipulator with encoders)
with no additive sensor noise, the block diagram for LQR control looks like the following:

Figure 2: Block diagram of LQR on linearized system without reference input

where matrices A,B, and C are the system matrices of the linear system defined by Equations 2 and 3. K is a gain
matrix which can be computed using the MATLAB command lqr(). The penalty weights used for the state and
control effort are Q=diag([10 1 10 1]) and R=diag([2 2]). Note that R is the penalty weighting on the control
input v, not u. Therefore, the LQR solution is optimal with respect to v but not necessarily optimal with respect
to the physical control input u. Because this controller is a regulator, it seeks to steer the system to the origin.
To steer the system towards some reference state r instead of the origin, we require a slightly different formulation.
Intuitively, we might expect a valid control policy to be v = K(x − r) (this effectively “shifts” the tracking point
from the the origin to r). But it turns out we also need to add a nominal input v̄ that makes the reference state r
an equilibrium point. That is, the correct control policy is v = v̄+K(x− r) Also, because the system has two poles
at the origin, the steady-state error is guaranteed to converge to zero. The block diagram with the reference input
included is given in Figure 3 on the next page.

2

Figure 3: Block diagram of LQR on linearized system with reference input

To simulate the step response (i.e. response to unit reference), I defined a new linear system with system matrices
Ã = A− BK, B̃ = BK, and C̃ = C with r as the input and y as the output and used the step() command. Here
is the resulting step response with a reference input of r = [π, 0, π/2, 0]:

Figure 4: LQR step response of linearized system with reference input

As expected, the steady-state error is zero. The control law that we solved for is a control law for v, not a control
law for the the physical control input u. To get the corresponding control law for u, invert the mapping we used to
linearize the system in Section 3. Recall that the mapping used to linearize the nonlinear system was the following:

v = M−1(θ)
[
C(θ, θ̇) +G(θ)

]
+ u

To invert the mapping, solve for u:

u = −C(θ, θ̇)−G(θ) +M(θ)v (4)

where v = −K(x− r). Now we have u as a function of x only, which is the control law for u that we were seeking.
To gain intuition behind what feedback linearization is doing, we can substitute the expression for u in Equation 4
into Equation 1. u as we have designed it essentially cancels out any nonlinearities in the system and uses v to
control the resulting linear system.

However, feedback lineraization comes with some caveats. First, to perfectly cancel out nonlinearities, the con-
troller needs perfect knowledge of the state x. Second, it requires that the system be fully-actuated – that is, we
require dim(u) = dim(x) such that the control u can affect all states. It is also required that u is unconstrained or at
least able to take on all values that C(θ, θ̇)+G(θ)+M(θ)v takes. The first caveat can especially become a problem
when there is significant noise in your sensor measurements. In such cases, you should incorporate multiplicative
uncertainties into your model for robustness.

3

Here is a video of the controller successfully tracking a reference input r = [π, 0, π/2, 0]. A plot of θ1 and θ2 plotted
over time is shown in Figure 5 is shown below. As expected, the plots in Figures 4 and 5 match.

Figure 5: Plot of θ1 and θ2 over time

The control effort has also been plotted in the figure below:

Figure 6: Plot of control effort over time

4

https://youtu.be/KalPLfjl1b

5 Optimization Using Pontryagin’s Maximum Principle

While the system is able to track the reference using feedback linearizaton and LQR, the control policy in Figure 6 is
not optimal with respect to u. To optimize the control policy with respect to u, we can use Pontryagin’s maximum
principle.

5.1 Necessary Conditions for Optimality and Boundary Conditions

Pontryagin’s maximum principle provides a set of necessary optimality conditions that must be satisfied by an optimal
solution of optimization problems involving dynamic constraints (i.e. constraints that are functions of time). In
addition to handling dynamic constraints, this framework can also accommodate state and input constraints, making
it applicable to a broad class of control problems. This approach to solving optimal control problems is sometimes
referred to as the “indirect” method because it solves the optimization problem without directly discretizing the
control and state trajectories and then formulating an optimization problem over these discretized variables. The
solution method involves solving for set of first-order differential equations for the state variables and costate variables.
The costate variables are a collection of Lagrange multipliers (which are continuous functions of time). But before
solving these equations, a cost functional to optimize the control policy with respect to must be defined:

J =

∫ tf

0

L(x,u) dt =

∫ tf

0

uT Ru dt (5)

where R =

[
1 0
0 1

]
. In other words, we will solve a minimal control effort problem. Note that tf is a free variable

that we can optimize over. To steer the system to a desired final state as we did in LQR, we also define a final state
constraint that the optimal control policy u∗ must satisfy:

x(tf) =


π
0

π/2
0

 (6)

The dynamic constraint associated with satisfying the system dynamics is given by Equation 1. We will assume that
there are no constraints on the control input u. Next, we construct the Hamiltonian:

H = L+ λT f = L+

n∑
i=1

λifi

where L is defined in the cost function in Equation 4, f is given by the dynamics ẋ = f(x) in Equation 2, and
λ is a vector containing the Lagrange multipliers λi corresponding to the dynamic constraints fi on each state
variable. With the cost and constraints defined, we seek to find an optimal control policy u∗ that minimizes the
cost function J while satisfying the dynamic constraint given by Equation 1 and final state constraint given in
Equation 6. Pontryagin’s principle states that the optimal state trajectory x∗ and optimal control policy u∗ must
satisfy the following necessary conditions:

(I) ẋ∗(t) = ∂H
∂λ (ẋ∗(t),u∗(t),λ∗(t), t)

(II) λ̇
∗
(t) = −∂H

∂x (ẋ∗(t),u∗(t),λ∗(t), t)

(III) 0 = ∂H
∂u (ẋ∗(t),u∗(t),λ∗(t), t)

where V (x(tf), tf) is the terminal cost function. Conditions (I) and (II) give us 2n differential equations (where n
is the dimension of x) and (III) gives us m algebraic equations (where m is the dimension of u). This implies that
we will have 2n constants of integration to solve for. The constants of integration can be found from the following
boundary conditions:

(i) x∗(t0) = x0

(ii) x∗(tf) = xf

(iii)
[
∂V
∂x (ẋ

∗(t),u∗(t),λ∗(t), t)
]T

δxf +
[
H(ẋ∗(t),u∗(t),λ∗(t), t) + ∂V

∂t (x
∗(tf), tf)

]
δtf = 0

5

(i) and (ii) are the initial conditions and final conditions, respectively. (iii) is called the transversality condition,
which determines the optimal terminal conditions (i.e. optimal tf and/or x(tf), depending on which are allowed to
vary). For this problem, since the final state is fixed (but final time is free), the first term vanishes and only the
second term remains. The boundary conditions give us 2n+ 1 equations to solve for the 2n constants of integration
and the final time tf . Note that, by introducing final constraints, we introduce additional Lagrange multipliers by
adding an extra term to the augmented cost function. This has implications on being able to find the Lagrange
multipliers at the final time tf as we will see in the next section.

5.2 Numerical Solution Using Gradient Descent

A straightforward way to solve equations (I)–(III) numerically is by following the iterative procedure outlined below:

Figure 7: Numerical algorithm for solving state and costate equations.

The problem with this approach is that it assumes that the final costate λ(tf) is not a free parameter and can
be determined from knowing x(tf). In the case of having final state constraints, we introduce additional Lagrange
multipliers associated with the final state constraints. These additional Lagrange multipliers will be constants, not
functions of time, since they correspond to constraints at a single point in time rather than a dynamic constraint that
must hold for all time. In this case, the original Lagrange multipliers associated with the dynamic constraints must
be free at the final time tf ; if they weren’t, then the problem would be overconstrained at the final time. Therefore,
the procedure in Figure 7 does not work for the cases with final state constraints.

In an attempt to solve for λ(t) another way, I used the optimality condition ∂H
∂u = 0 which is just an algebraic

equation and not a differential equation. This is possible in general when dim(u) = dim(λ). But for this problem,
dim(u) < dim(λ). Yet, we are still able to find all four Lagrange multipliers λ1(t), λ2(t), λ3(t), and λ4(t) because
∂H
∂u = 0 gives us two equations for λ2 and λ4 (λ1 and λ3 do not appear). One can solved for λ2 and λ4 using

MATLAB’s symbolic toolbox (see symbolic.mlx in the Appendix A). Moreover, the costate equations for λ̇1(t) and
λ̇3(t) depend on λ2(t) and λ4(t) only, which allows us to find λ1(t) and λ3(t) by integrating. The resulting plots for
all four Lagrange multipliers are plotted below:
However, this doesn’t give us any useful information about how we could improve our initial guess for u∗(t) since we
found λ using the optimality condition ∂H

∂u = 0; this means that we assumed our initial guess was already optimal

and the λ we found is the corresponding optimal λ∗. As a result, ∂H
∂u is just zero for all t:

Ideally, we would know our state trajectory x(t) and costate trajectory λ(t) corresponding to our initial guess for
u(t). Then we can calculate what the corresponding ∂H

∂u is and use that information to perform a classic gradient

descent algorithm ui+1 = ui + α∂H
∂u

∣∣∣∣
u=ui

to nudge your control input u to the optimal value with an appropriate

step size α.
An approach like this (which corresponds to the procedure in Figure 7) would be possible if there were no final
constraints on the system. In such a case, we would be able to integrate the state equation forward in time from the

6

Figure 8: Plot of λ over time.

Figure 9: Plot of ∂H
∂u over time.

initial state to find x(tf), then find λ(tf) from the transversality condition, and then integrate the costate equation
backwards in time to find λ(t). This would give trajectories for x(t) and λ(t) corresponding to a guess for u∗(t).
Then we would be able to calculate ∂H

∂u for the current guess and use gradient descent to improve our guess iteratively
until convergence.

A possible workaround this problem would be to enforce a terminal cost instead of a terminal constraint. Whereas
a terminal constraint is a hard constraint that must be satisfied, a terminal cost merely penalizes deviations from a
desired terminal state. Since this approach does not introduce additional Lagrange multipliers to the problem, the
gradient descent method described in this section should work. Moreover, by using this approach, we remove the
need for a feasible initial guess to satisfy the desired final state. Instead, any initial guess becomes is a feasible initial
guess (it’ll just have a high final cost).

7

6 Optimization by Parameterizing Control Input u(t)

Another approach to solving the optimal control problem is by parameterizing the control input using a set of basis
functions. This effectively turns the infinite-dimensional control problem (where we must find control input for every
single point in continuous time) to a finite-dimensional one where we can use functions like fmincon in MATLAB
to search for the optimal set of coefficients for the basis functions. For example, one option is to use polynomials to
parameterize u(t):

u(t) =

[
α1t

n + β1t
n−1xw + γ1t

n−2 + · · ·+ c1
α2t

n + β2t
n−1 + γ2t

n−2 + · · ·+ c2

]
(7)

which is parameterized by a set of parameters [α1, β1, γ1, ..., c1, α2, β2, γ2, ..., c2] . These are the decision variables
of the optimization problem. As in any iterative method, having a good initial guess can expedite convergence. To
obtain a good initial guess for these parameters, we can take our initial guess for u(t) and use polynomial interpolation
to obtain a set of coefficients that approximately matches our initial guess for u(t) (Figure 6). Using too high of a
degree of a polynomial leads to Runge’s phenomenon so a polynomial of degree 3 was chosen. Here are plots of the
interpolated polynomials:

Figure 10: Polynomial fit to initial guess for u(t).

The coefficients of the polynomial fit are the following:

α1 = −0.0718, β1 = 0.8435, γ1 = 0, c1 = −2.7852

α2 = 0.0194, β2 = −0.2289, γ2 = 0, c2 = 3.5124

While the interpolated polynomial is not a great approximation of our initial guess for u(t), it has the correct order
of magnitude and may serve as a good starting point. But upon running fmincon, it was clear that the results of
this interpolation leads to a vastly different state trajectory as shown in Figure 11 on the next page.

8

Figure 11: Polynomial fit to initial guess for u(t).

This poses a problem. If we try to get our initial guess for the parameters to approximate our initial guess u(t)
as closely as possible by increasing the number of points we interpolate through, the polynomial suffers severely from
Runge phenomenon. On the other hand, if we sample too few points from our initial guess u(t), the trajectory is
nowhere close to being a feasible solution and the solver has a difficult time converging to an optimal solution. It
seems that other basis functions may be more effective.

7 Summary of Code

This section describes how the code for this project is structured. I wrote three different main scripts, one for each
approach:

• main fdbklin.m: This is the main script for control using feedback lineaization + LQR.

• main pontryagin.m: This is the main script for optimal control using Pontryagin’s principle (using result of
feedback lineraization + LQR as an initial guess for iterative procedure).

• main fmincon.m: This is the main script for optimal control using parameterization and fmincon.

There is an additional script, polynomial fit.m which fits a polynomial to the control input u(t) from feedback
linearization + LQR. The coefficients of this fit gets used in main fmincon.m as an initial guess for the optimal
polynomial coefficients.

The function TwoLinkArmDynamics.m is shared by all of the three main scripts above:

• TwoLinkArmDynamics.m: This function encodes the dynamics of the two link manipulator. It is meant to be
passed into ode45 to solve for the state trajectory x(t).

The following functions are used by main fdbkln.m:

• FLController.m: This function computes the control input for a given time t according to the control policy
in Equation 4.

• CalcGain.m: This function computes the optimal gain K for the linearized system in Equations 2 and 3.

The following functions are used by main fmincon.m:

• control input.m: This function computes the control input corresponding to the polynomial control policy in
Equation 7 given the polynomial coefficients.

9

• cost function.m: This function computes the cost J =
∑N

k=1

(
∥xdesired − x(tk)∥2 + ∥u(tk)∥2

)
given the

polynomial coefficients of your control policy. It uses the coefficients you pass in to generate the control policy
as a function of time and uses ode45 to get the corresponding state trajectory x(t) in order to calculate J .

• final state error.m: This function encodes the final state constraint that you pass into fmincon.

There is also a livescript (easier to visualize outputs that are symbols in livescripts), symbolic.mlx, that uses symbolic
toolbox to solve for the costate variables λi and convert them to MATLAB functions for use in the main pontryagin.m

script.

8 Takeaways

Although I wasn’t able to solve for a truly optimal control policy using Pontryagin’s principle or by parameterizing
the control input u(t), this project gave me a deeper understanding of optimal control theory. In addition to lecture
material covered by Prof. MacMartin in MAE 6780, a useful reference for this project was Optimal Control Theory:
An Introduction by Kirk, which I used to study Pontryagin’s principle in greater detail. This project also gave me a
lot of experience with structuring code for complex optimization problems. As I continue to study optimal control,
I plan to revisit this problem and improve my approach as I deepen my understanding.

10

A Appendix

A.1 MATLAB Code: main fdbkln.m

1 % Two link robot arm control simulation

2 % Author: Addy (Jin Hyun) Park

3 % Main script for control using feedback linearization.

4 clc

5 clear

6 close all

7 global u_global

8
9 % System parameters

10 m1 = 10;

11 m2 = 10;

12 L1 = 1;

13 L2 = 1;

14 param = [m1; m2; L1; L2]; % parameter vector

15 u_global = []; % global array to store solution for u and time for u

16
17 % Penalty weights and LQR gain

18 Q = diag ([10 1 10 1]);

19 R = diag ([2 2]);

20 K = CalcGain(Q,R);

21
22 % Reference input and control law

23 r = [pi 0 pi/2 0]; % reference input

24 u = @(x) FLController(x,K,r,param); % function for control policy (fdbk. lin.)

25
26 % Solve for dynamics using ode45

27 T = 10; % terminal time (just needs to be big enough to reach target pose)

28 x0 = [0;0;0;0]; % initial conditions

29 tspan1 = [0 T];

30 fun1 = @(t,x) TwoLinkArmDynamics(t,x,u(x),param); % robot arm dynamics

31 [t,x] = ode45(fun1 ,tspan1 ,x0); % solve using ode45

32
33 % Plots for theta , theta_dot

34 theta1 = x(:,1);

35 theta2 = x(:,3);

36 theta1dot = x(:,2);

37 theta2dot = x(:,4);

38
39 figure (1)

40 hold on

41 plot(t,theta1)

42 plot(t,theta2)

43 yline(r(1),'--')
44 yline(r(3),'--')
45 legend (" theta1","theta2 ")

46 title ("\ theta over time")

47 xlabel ("Time (sec)")

48 ylabel ("Angle (rad)")

49
50 figure (2)

51 hold on

52 plot(u_global (:,1),u_global (:,2))

53 plot(u_global (:,1),u_global (:,3))

11

54 title(" Control effort ")

55 xlabel ("Time (sec)")

56 ylabel (" Control input (N*m)")

57 legend ("\ tau_1 ","\ tau_2")

58
59 % Animate solution

60 tanimation = linspace(0,T,500);

61 theta1 = interp1(t,theta1 ,tanimation); % interpolate solution onto evenly -spaced

time vector for smooth animation

62 theta2 = interp1(t,theta2 ,tanimation);

63
64 videoFile = 'animation.mp4';
65 v = VideoWriter(videoFile , 'MPEG -4'); % Specify the file name and format

66 v.FrameRate = 80; % Set the frame rate

67 open(v); % Open the file for writing

68
69 figure (3)

70 hold on ; grid on

71 set(gca ,'XLim' ,[-2.5 2.5])

72 set(gca ,'YLim' ,[-2.5 2.5])

73 title("Two -link Planar Manipulator ")

74 xlabel ("x (m)")

75 ylabel ("y (m)")

76 axis equal;

77 for i = 1: length(tanimation)

78 %cla

79 h1 = plot ([0 L1*cos(theta1(i))],[0 L1*sin(theta1(i))],'Color ' ,[0 0.4470

0.7410] , 'LineWidth ', 5);

80 h2 =plot([L1*cos(theta1(i)) L1*cos(theta1(i))+L2*cos(theta2(i))],[L1*sin(

theta1(i)) L1*sin(theta1(i))+L2*sin(theta2(i))],'Color ' ,[0.4660 0.6740

0.1880] , 'LineWidth ', 5);

81 pause (0.01);

82 if i == length(tanimation) % Break the loop if we've reached the end of the

time span

83 break

84 end

85 drawnow; % Render the frame

86 frame = getframe(gcf); % Capture the frame

87 writeVideo(v, frame); % Write the frame to the video

88 delete(h1)

89 delete(h2)

90 end

91 close(v);

A.2 MATLAB Code: TwoLinkArmDynamics.m

1 function xdot = TwoLinkArmDynamics(t,x,u,param)

2 %State equations (i.e. eqns of motion) for two link robot arm

3 % t: time

4 % x: state vector [theta1 , theta1_dot , theta2 , theta2_dot]

5 % tvec: time of applied torque

6 % u: applied torque vector (the entire time history) [u1(t), u2(t)]

7 % param: vector containing system parameters [m1, m2, L1, L2]

8 % Constants

9 g = -9.81;

10 % Extract system parameters

12

11 m1 = param (1);

12 m2 = param (2);

13 L1 = param (3);

14 L2 = param (4);

15 % Extract state variables

16 theta1 = x(1);

17 theta1_dot = x(2);

18 theta2 = x(3);

19 theta2_dot = x(4);

20 % Matrices

21 M = [(m1+m2)*L1^2 m2*L1*L2*(cos(theta1 -theta2));

22 m2*L1*L2*cos(theta1 -theta2) m2*L2^2];

23 C = [m2*L1*L2*theta2_dot ^2*sin(theta1 -theta2);

24 -m2*L1*L2*theta1_dot ^2* sin(theta1 -theta2)];

25 G = [(m1+m2)*g*L1*cos(theta1);

26 m2*g*L2*cos(theta2)];

27 % Equations of motion

28 theta_ddot = -inv(M)*(+C+G)+u;

29 xdot = [theta1_dot;theta_ddot (1);theta2_dot;theta_ddot (2)];

30 end

A.3 MATLAB Code: FLController.m

1 function K = CalcGain(Q,R)

2 %Calculates optimal LQR gain given penalty weights Q and R

3 % OL system dynamics

4 A = [0 1 0 0;

5 0 0 0 0;

6 0 0 0 1;

7 0 0 0 0];

8 B = [0 0;

9 1 0;

10 0 0;

11 0 1];

12 C = eye(4);

13 D = zeros (4,2);

14
15 sys1 = ss(A,B,C,D);

16
17 % LQR

18 [K,S,P] = lqr(sys1 ,Q,R);

19 end

A.4 MATLAB Code: CalcGain.m

1 function K = CalcGain(Q,R)

2 % Calculates optimal LQR gain given penalty weights Q and R

3 % OL system dynamics

4 A = [0 1 0 0;

5 0 0 0 0;

6 0 0 0 1;

7 0 0 0 0];

8 B = [0 0;

9 1 0;

10 0 0;

13

11 0 1];

12 C = eye(4);

13 D = zeros (4,2);

14
15 sys1 = ss(A,B,C,D);

16
17 % LQR

18 [K,S,P] = lqr(sys1 ,Q,R);

19 end

A.5 MATLAB Code: main pontryagin.m

1 % Two link robot arm control simulation

2 % Author: Addy (Jin Hyun) Park

3 % Main script for control using Pontryagin principle.

4 clc

5 clear

6 close all

7 global u_global

8
9 % System parameters

10 m1 = 10;

11 m2 = 10;

12 L1 = 1;

13 L2 = 1;

14 param = [m1;m2;L1;L2]; % pack into vector

15 u_global = []; % global array to store solution for u and time for u

16
17 %% Initial guess for u(t) using feedback linearization

18 % Penalty weights and LQR gain

19 Q = diag ([10 1 10 1]);

20 R = diag ([2 2]);

21 K = CalcGain(Q,R);

22
23 % Reference and control law

24 r = [pi 0 pi/2 0]; % reference input

25 u = @(x) FLController(x,K,r,param); % function for controller (fdbk. lin.)

26
27 % Solve for dynamics using ode45

28 T = 10; % terminal time just needs to be big enough to reach target pose

29 x0 = [0;0;0;0]; % initial conditions

30 tspan1 = [0 T];

31 options = odeset('RelTol ', 1e-10, 'AbsTol ', 1e-10);

32 fun1 = @(t,x) TwoLinkArmDynamics(t,x,u(x),param); % differential equation to

solve

33 [t,x] = ode45(fun1 ,tspan1 ,x0,options); % solve using ode45

34
35 % Some plots

36 theta_1 = x(:,1);

37 theta_2 = x(:,3);

38 theta_dot_1 = x(:,2);

39 theta_dot_2 = x(:,4);

40 t_u = u_global (:,1); % time vector that corresponds to tau

41 tau1 = u_global (:,2);

42 tau2 = u_global (:,3);

43

14

44 figure (1)

45 hold on

46 plot(t,theta_1)

47 plot(t,theta_2)

48 yline(r(1),'--')
49 yline(r(3),'--')
50 legend (" theta1","theta2 ")

51 title ("\ theta over time")

52 xlabel ("Time (sec)")

53 ylabel ("Angle (rad)")

54
55 figure (2)

56 hold on

57 plot(t_u ,tau1)

58 plot(t_u ,tau2)

59 title(" Control effort ")

60 xlabel ("Time (sec)")

61 ylabel (" Control effort (N*m)")

62 legend ("\ tau_1 ","\ tau_2")

63
64 % Also compute thetaddot for later

65 theta_ddot_1 = diff(theta_dot_1)./diff(t);

66 theta_ddot_2 = diff(theta_dot_2)./diff(t);

67
68 %% Compute costate variables

69 % Interpolate all state and costate variables to the same time vector

70 [t_u ,index ,~] = unique(t_u); % no duplicates are allowed for interp1

71 tau1 = tau1(index);

72 tau2 = tau2(index);

73 tau1 = interp1(t_u ,tau1 ,t);

74 tau2 = interp1(t_u ,tau2 ,t);

75 % Find lambda_2 and lambda_4 by solvoing dH/du=0

76 lambda2 = L1.*(L1.*m1.*tau1+L1.*m2.*tau1+L2.*m2.*tau2.*cos(theta_1 -theta_2))

.* -2.0;

77 lambda4 = L2.*m2.*(L2.*tau2+L1.*tau1.*cos(theta_1 -theta_2)).* -2.0;

78 % Plot lambda_2 and lambda_4

79 figure (3)

80 hold on

81 plot(t,lambda2)

82 plot(t,lambda4)

83 title(" Costate variables ")

84 xlabel ("Time (sec)")

85 ylabel (" Costate variables ")

86
87 %%% Solve for lambda_1 and lambda_3 %%%

88 % First compute lambda_dot_2 and lambda_dot_4

89 lambda_dot_2 = diff(lambda2)./diff(t);

90 lambda_dot_4 = diff(lambda4)./diff(t);

91 % Adjust size to match size of lambda_dot_2 and lambda_dot_4

92 theta_1 = theta_1 (2: end);

93 theta_2 = theta_2 (2: end);

94 theta_dot_1 = theta_dot_1 (2: end);

95 theta_dot_2 = theta_dot_2 (2: end);

96 lambda2 = lambda2 (2: end);

97 lambda4 = lambda4 (2: end);

98 % Compute lambda_1 and lambda_3

15

99 lambda1 = -lambda_dot_2 -(L1.*L2.* lambda4 .*m2.* theta_dot_1 .*sin(theta_1 -theta_2)

.*(m1+m2).*2.0) ./(L2 .^2.*m2.^2-L2 .^2.*m2 .^2.* cos(theta_1 -theta_2).^2+L2 .^2.*

m1.*m2)+(L1.*L2.* lambda2 .*m2.* theta_dot_1 .*cos(theta_1 -theta_2).*sin(theta_1 -

theta_2).*2.0) ./(L1.*L2.*m1+L1.*L2.*m2 -L1.*L2.*m2.*cos(theta_1 -theta_2).^2);

100 lambda3 = -lambda_dot_4 +(L1.*L2.* lambda2 .*m1.* theta_dot_2 .*sin(theta_1 -theta_2)

.*2.0) ./(L1 .^2.*m1+L1 .^2.*m2 -L1 .^2.*m2.*cos(theta_1 -theta_2).^2) -(L1.*L2.*

lambda4 .*m1.* theta_dot_2 .*cos(theta_1 -theta_2).*sin(theta_1 -theta_2).*2.0) ./(

L1.*L2.*m1+L1.*L2.*m2 -L1.*L2.*m2.*cos(theta_1 -theta_2).^2);

101 % lambda_1 and lambda_3 are a little jittery so smoothen it out first

102 lambda1 = smoothdata(lambda1 , "sgolay ");

103 lambda3 = smoothdata(lambda3 , "sgolay ");

104 % Plot lambda_1 and lambda_3

105 figure (3)

106 hold on

107 plot(t(2: end), lambda1)

108 plot(t(2: end), lambda3)

109 legend ("\ lambda_2 ","\ lambda_4 ","\ lambda_1 ","\ lambda_3 ")

110
111 %% Find new guess for u(t) using gradient descent u' = u + alpha*dH/du

112 %%% Compute Hamilitonian %%%

113 % Adjust size of tau1 and tau2

114 tau1 = tau1 (2: end);

115 dtau1 = gradient(tau1);

116 dtau1 = smoothdata(dtau1 , "sgolay ");

117
118 tau2 = tau2 (2: end);

119 dtau2 = gradient(tau2);

120 dtau2 = smoothdata(dtau2 , "sgolay ");

121
122 Hamiltonian = tau1 .^2+ tau2 .^2+ lambda1 .* theta_dot_1+lambda2 .* theta_ddot_1+lambda3

.* theta_dot_2+lambda4 .* theta_ddot_2;

123 dH = gradient(Hamiltonian);

124 dH = smoothdata(dH , "sgolay ");

125
126 dHdu1 = tau1 .*2.0+ lambda2 ./(L1.^2.* m1+L1.^2.*m2-L1.^2.* m2.*cos(theta_1 -theta_2)

.^2) -(lambda4 .*cos(theta_1 -theta_2))./(L1.*L2.*m1+L1.*L2.*m2 -L1.*L2.*m2.*cos(

theta_1 -theta_2).^2);

127 dHdu2 = tau2 .*2.0 -(lambda2 .*cos(theta_1 -theta_2))./(L1.*L2.*m1+L1.*L2.*m2-L1.*L2

.*m2.*cos(theta_1 -theta_2).^2)+(lambda4 .*(m1+m2))./(L2 .^2.*m2.^2-L2 .^2.*m2

.^2.* cos(theta_1 -theta_2).^2+L2.^2.* m1.*m2);

128
129 % Plot dH/du

130 figure (4)

131 title("dHdu")

132 hold on

133 plot(t(2: end),dHdu1)

134 plot(t(2: end),dHdu2)

135 legend ("dHdu1","dHdu2")

136 ylim ([-1,1])

A.6 MATLAB Code: symbolic.mlx

1 clc

2 clear

3 close all

4

16

5 % Create symbols

6 syms g m1 m2 L1 L2 theta_1 theta_2 theta_dot_1 theta_dot_2 theta_ddot_1...

7 theta_ddot_2 tau1 tau2 lambda1 lambda2 lambda3 lambda4 lambda5 real

8
9 M = [(m1+m2)*L1^2 m2*L1*L2*(cos(theta_1 -theta_2));

10 m2*L1*L2*cos(theta_1 -theta_2) m2*L2^2]; % mass matrix

11 c_vec = [m1*L1*L2*theta_dot_2 ^2*sin(theta_1 -theta_2);

12 -m2*L1*L2*theta_dot_1 ^2* sin(theta_1 -theta_2)]; % coriolis term

13 g_vec = [0;0]; % gravity term

14 u_vec = [tau1;tau2]; % control input

15
16 thetaddot = inv(M)*(u_vec -c_vec -g_vec);

17
18 theta1ddot = thetaddot (1);

19 theta2ddot = thetaddot (2);

20
21 Hamiltonian = tau1 ^2+ tau2 ^2+ lambda1*theta_dot_1 + lambda2*theta1ddot + lambda3*

theta_dot_2 + lambda4*theta2ddot

22
23 lambda1dot = -diff(Hamiltonian ,theta_1)

24 lambda2dot = -diff(Hamiltonian ,theta_dot_1)

25 lambda3dot = -diff(Hamiltonian ,theta_2)

26 lambda4dot = -diff(Hamiltonian ,theta_dot_2)

27 dHdu1 = diff(Hamiltonian ,tau1)

28 dHdu2 = diff(Hamiltonian ,tau2)

29
30 % Solve for lambda2 and lambda4

31 solution1 = solve([dHdu1 ==0 dHdu2 ==0],[lambda2 lambda4]);

32 solution1.lambda2

33 solution1.lambda4

34
35 % Solve forl lambda1 and lambda3

36 syms lambda_dot_2 lambda_dot_4

37 solution2 = solve([lambda2dot -lambda_dot_2 ==0 lambda4dot -lambda_dot_4 ==0],[

lambda1 lambda3]);

38 solution2.lambda1

39 solution2.lambda3

40
41 % Convert symbolic functions to MATLAB functions for use in other

42 % scripts/functions

43 fun1 = matlabFunction(lambda1dot);

44 fun2 = matlabFunction(lambda2dot);

45 fun3 = matlabFunction(lambda3dot);

46 fun4 = matlabFunction(lambda4dot);

47 fun5 = matlabFunction(solution1.lambda2);

48 fun6 = matlabFunction(solution1.lambda4);

49 fun7 = matlabFunction(solution2.lambda1);

50 fun8 = matlabFunction(solution2.lambda3);

A.7 MATLAB Code: main fmincon.m

1 % Two link robot arm control simulation

2 % Author: Addy (Jin Hyun) Park

3 % Main script for control using fmincon.

4 clc

5 clear

17

6 close all

7
8 global u_global

9 u_global = []; % global array to store solution for u and t

10
11 poly_degree = 1;

12
13 % Initial guess for the control parameters (e.g., random or zeros)

14 n_params = poly_degree + 1; % Number of parameters for each control input

15 %initial_params = [-0.0718 , 0.8435 , 0, -2.7852, 0.0194 , -0.2289, 0, 3.5124];

16 initial_params = [-0.2449, 3.7090 , -2.7852, 0.0651 , -1.0018, 3.5124];

17 % Time span and initial conditions

18 t_span = [0, 10]; % Define time span for optimization

19 x0 = [0; 0; 0; 0]; % initial state

20
21 % Define constraints (e.g., final state must be [0, 0])

22 final_state_constraint = @(params) final_state_error(params , t_span , x0);

23
24 % Set up optimization options

25 options = optimoptions('fmincon ', 'Display ', 'iter', 'Algorithm ', 'sqp');
26
27 % Solve optimization problem

28 optimal_params = fmincon (@(params) cost_function(params , t_span , x0), ...

29 initial_params , [], [], [], [], [], [],

final_state_constraint , options);

A.8 MATLAB Code: polynomial fit.m

1 % Script for finding polynomial interpolation that approximates initial

2 % guess for u(t) found using feedback linearization & LQR.

3 % Author: Addy (Jin Hyun) Park

4 clc

5 clear

6 close all

7
8 % Load initial guess

9 load(" u_global.mat")

10 u_initial = u_global;

11
12 % Define the number of sample points and the degree of the polynomial

13 num_samples = 3;

14 poly_degree = 3;

15
16 % Generate time vector 't' associated with the data points in 'u'
17 N = size(u_initial , 1); % Number of total data points

18 t_original = u_initial (:, 1);

19
20 % Select 10 evenly spaced sample points

21 sample_indices = round(linspace(1, N, num_samples));

22 samples = u_initial(sample_indices , :);

23 t_samples = samples (:,1); % Sampled time points

24 u_samples = samples (: ,2:3); % Corresponding sampled u(t) points

25
26 % Perform polynomial fitting for each dimension of u

27 % Initialize matrices to store polynomial coefficients for both dimensions

28 poly_coeffs = zeros(2, poly_degree +1);

18

29
30 % Perform polynomial fitting for each dimension of u

31 for dim = 1:2

32 % Fit a 9th-degree polynomial for the sampled data in the current dimension

33 poly_coeffs(dim , :) = polyfit(t_samples , u_samples (:, dim), poly_degree);

34 end

35
36 % Display the polynomial coefficients for each dimension

37 disp('Polynomial coefficients for dimension 1:');
38 disp(poly_coeffs (1, :));

39
40 disp('Polynomial coefficients for dimension 2:');
41 disp(poly_coeffs (2, :));

42
43 % Optional: Plot original data and fitted polynomial for visualization

44 t_fine = linspace(0, 10, 100); % Time points for plotting the fitted polynomial

45
46 % Evaluate the fitted polynomials for both dimensions at the fine time points

47 u_fit_1 = polyval(poly_coeffs (1, :), t_fine);

48 u_fit_2 = polyval(poly_coeffs (2, :), t_fine);

49
50 % Plot for u1

51 figure;

52 subplot(2, 1, 1);

53 plot(t_samples , u_samples(:, 1), 'ro', 'DisplayName ', 'Sampled Points '); %

Sampled u1 points

54 hold on;

55 plot(t_original , u_initial(:, 2), 'b-', 'DisplayName ', 'u_1(t)'); % Original u1

data

56 plot(t_fine , u_fit_1 , 'g--', 'DisplayName ', 'Fitted Polynomial for u_1(t)'); %

Fitted polynomial for u1

57 title('Polynomial Fit for u_1');
58 legend;

59 xlabel('Time t');
60 ylabel('u_1(t)');
61 ylim ([-20 ,20])

62 hold off;

63
64 % Plot for u2

65 subplot(2, 1, 2);

66 plot(t_samples , u_samples(:, 2), 'ro', 'DisplayName ', 'Sampled Points '); %

Sampled u2 points

67 hold on;

68 plot(t_original , u_initial(:, 3), 'b-', 'DisplayName ', 'u_2(t)'); % Original u2

data

69 plot(t_fine , u_fit_2 , 'g--', 'DisplayName ', 'Fitted Polynomial for u_2(t)'); %

Fitted polynomial for u2

70 title('Polynomial Fit for u_2');
71 legend;

72 xlabel('Time t');
73 ylabel('u_2(t)');
74 hold off;

A.9 MATLAB Code: cost function.m

1 function J = cost_function(params , t_span , x0)

19

2 % Function that calculates cost given coefficients for the polynomial

3 % control input ('params '). It uses ode45 to get the state trajectory

4 % corresponding to this polynomial control input and calculates the cost

5 % for this control & state trajectory.

6 % Define time points for evaluation

7 t_eval = linspace(t_span (1), t_span (2), 100); % Adjust based on time

resolution

8
9 % System parameters

10 m1 = 10;

11 m2 = 10;

12 L1 = 1;

13 L2 = 1;

14 sysparams = [m1; m2; L1; L2]; % pack into vector

15
16 desired_final_state = [pi 0 pi/2 0]';
17
18 % Solve system dynamics over the time span using the given control input

parameterization

19 [t_sol , x_sol] = ode45 (@(t, x) TwoLinkArmDynamics(t, x, control_input(t,

params), sysparams), t_eval , x0);

20
21 % Cost function: for example , minimize final state deviation and control

effort

22 J = 0; % Initialize

23 for i = 1: length(t_sol)

24 u_i = control_input(t_sol(i), params);

25
26 % Add terms to the cost function , for example:

27 J = J + norm(x_sol(i, :) - [desired_final_state])^2 + norm(u_i)^2; %

Quadratic penalty

28
29 if i == 1

30 figure

31 plot(t_sol , x_sol)

32 end

33 end

34 J = J / length(t_sol); % Normalize

35 end

A.10 MATLAB Code: control input.m

1 function u_t = control_input(t, params)

2 % Function for generating control input as a function of time for

3 % polynomial control input u(t) = alpha*t+beta*t^2+ gamma*t^3+...

4 % 'params ' is a vector containing the polynomial coefficients.

5 % params is a vector containing the parameters for both u_1(t) and u_2(t)

6 % First half of params is for u_1 , second half is for u_2

7 n_params = length(params) / 2;

8 u1_params = params (1: n_params);

9 u2_params = params(n_params +1:end);

10
11 % Polynomial representation of control inputs u_1(t) and u_2(t)

12 u1_t = polyval(u1_params , t); % Polynomial for u_1(t)

13 u2_t = polyval(u2_params , t); % Polynomial for u_2(t)

14

20

15 % Return the 2D control input as a vector

16 u_t = [u1_t; u2_t];

17 end

A.11 MATLAB Code: final state error.m

1 function [c, ceq] = final_state_error(params , t_span , x0)

2 % This function contains the final state constraint which will be passed to

3 % fmincon.

4 % Simulate the system

5 % System parameters

6 m1 = 10;

7 m2 = 10;

8 L1 = 1;

9 L2 = 1;

10 sysparams = [m1; m2; L1; L2]; % pack into vector

11
12 [~, x_sol] = ode45 (@(t, x) TwoLinkArmDynamics(t, x, control_input(t, params)

, sysparams), linspace(t_span (1), t_span (2), 100), x0);

13
14 % Final state

15 x_final = x_sol(end , :);

16
17 % Constraints: Ensure final state matches desired final state

18 desired_final_state = [pi 0 pi/2 0]; % Example desired final state

19 ceq = x_final - desired_final_state; % Equality constraint

20
21 % No inequality constraints in this case

22 c = [];

23 end

21

	Introduction
	Dynamics of a Two-link Planar Manipulator
	Feedback Linearization
	Linear Quadratic Regulator
	Optimization Using Pontryagin's Maximum Principle
	Necessary Conditions for Optimality and Boundary Conditions
	Numerical Solution Using Gradient Descent

	Optimization by Parameterizing Control Input u(t)
	Summary of Code
	Takeaways
	Appendix
	MATLAB Code: main_fdbkln.m
	MATLAB Code: TwoLinkArmDynamics.m
	MATLAB Code: FLController.m
	MATLAB Code: CalcGain.m
	MATLAB Code: main_pontryagin.m
	MATLAB Code: symbolic.mlx
	MATLAB Code: main_fmincon.m
	MATLAB Code: polynomial_fit.m
	MATLAB Code: cost_function.m
	MATLAB Code: control_input.m
	MATLAB Code: final_state_error.m

